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Abstract

This paper aims at presenting a family of exact solutions for the longitudinal vibration of variable area
rods. Area variations that give solutions in terms of the confluent hypergeometric function are being sought
for and the governing differential equation is appropriately reduced to the confluent hypergeometric
differential equation, using a generic transformation. The eigenfrequencies of rods with certain area
variations, subjected to classical boundary conditions, are obtained and the parametric space of the
solutions obtained is studied. These solutions are also highly useful in other topics of study such as
torsional vibration of rods and wave propagation in ducts with variable cross-sectional areas, since the
governing differential equations are very similar.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The longitudinal vibration of rods is a topic of great interest with several numerical and
analytical solutions, approximate and exact, available in the literature. Its importance can be
understood from its application in the design of high-rise buildings and towers, high aspect-ratio
aircraft wings, machine shafts, etc. Longitudinal and torsional vibrations are significant in these
structures and their natural frequencies have to be considered while designing them. Exact
solutions and numerical techniques for longitudinal vibration of homogeneous rods can be found
in several books on the topic [1,2], but analytical studies on inhomogeneous rods are scarce.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Inhomogeneity can arise due to variation in cross-sectional area or in density (and thus Young’s
modulus). Interest in variable area rods was instigated by Eisenberger’s study [3] of vibration of
rods with polynomial variation in the cross-sectional area. Matsuda et al. [4] studied the
eigenfrequencies of a non-uniform bar by transforming the governing equation into a boundary
integral equation. Bapat [5] derived exact solutions and studied the mode shapes for the vibration
of rods with catenoidal and exponential area variations while Abrate [6] derived and studied the
traveling wave solutions for rods with area variations of the form A0ð1þ ax=LÞ2 and beams with
area variations of the form A0ð1þ axÞ4: Kumar and Sujith [7] obtained exact solutions for rods
with area variations of the form ðax þ bÞn and A0 sin

2
ðax þ bÞ: Li [8] carried out a functional

transformation of the governing differential equation and then obtained exact solutions for
certain functional forms of an involved parameter.
In the present study, the governing differential equation is transformed by assuming a general

form for the solution and also assuming a general transformation function for a change of
variable. Then, the transformation function is subjected to constraints that would make the
resulting differential equation of the confluent hypergeometric type. Then, applying more
restrictions on the transformation function, some interesting area variations that give Kummer’s
hypergeometric function as solution are determined. After that, the obtained solutions are shown
to be consistent with existing solutions. In the latter half of the paper, a study of the parametric
space of the solutions obtained is carried out.
2. The equation of motion

The governing differential equation for the free longitudinal vibration of a finite, isotropic,
variable area rod is given as [9]

q
qx

EAðxÞ
qu

qx

� �
¼ rAðxÞ

q2u
qt2

; on l1oxol2; tX0: (1)

The classical boundary conditions are:

ðiÞ Fixed 2 Fixed bar: uðl1; tÞ ¼ uðl2; tÞ ¼ 0;

ðiiÞ Fixed 2 Free bar: uðl1; tÞ ¼ quðl2; tÞ=qx ¼ 0;

ðiiiÞ Free 2 Free bar: quðl1; tÞ=qx ¼ quðl2; tÞ=qx ¼ 0: ð2Þ

Equating the external forces, acting on an infinitesimal element of a vibrating rod, to the inertial
force of the element (see Fig. 1), one can derive these equations. In the above equations, uðx; tÞ
represents the longitudinal displacement of a rod section at a time instant t;AðxÞ the cross-
sectional area of the rod, E the Young’s modulus of the material, r the density of the material and
l1 and l2 the end coordinates of the rod.
Assuming the displacement function to be varying harmonically with time; i.e., a solution of the

form uðx; tÞ ¼ W ðxÞeiot gives

d2W

dx2
þ

1

A

dA

dx

� �
dW

dx

� �
þ O2W ¼ 0; (3)
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Fig. 1. An infinitesimal element of a non-uniform rod.
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where W ðxÞ represents the mode shape and the frequency O ¼ o
p
ðr=EÞ; o being the angular

frequency. This equation has variable coefficients and so exact solutions cannot be found for a
general area variation. However, we can find exact solutions for certain specified area variations.
It is also possible to find area variations that give solutions in terms of special functions such as
Bessel functions or hypergeometric functions.
3. Solution in terms of the confluent hypergeometric function

In this section, a general procedure is developed for obtaining solutions in terms of Kummer’s
hypergeometric function. Then assuming some simple transformation functions, area variations
that give rise to the required solution are obtained. Assuming a functional variation for W ðxÞ of
the form

W ðxÞ ¼ xbegðxÞf ðxÞ: (4)

On substituting Eq. (4) into Eq. (3) and simplifying, Eq. (3) becomes

f 00
ðxÞ þ 2g0ðxÞ þ

2b

x
þ

A0

A

� �
f 0
ðxÞ þ ZðxÞf ðxÞ ¼ 0; (5)

where

ZðxÞ ¼
bðb � 1Þ

x2
þ
2bg0ðxÞ

x
þ g02ðxÞ þ g00ðxÞ þ

b

x

� �
A0

A
þ g0ðxÞ

A0

A
þ O2: (6)

Here, primes denote differentiation with respect to x: Now, assuming a general transformation
function

s ¼ hðxÞ (7)

gives

f 0
ðxÞ ¼ h0

ðxÞ
df ðsÞ

ds
(8)
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and

f 00
ðxÞ ¼ h02

ðxÞ
d2f ðsÞ

ds2
þ h00

ðxÞ
df ðsÞ

ds
: (9)

In order to convert the standard differential equation

f 00
ðxÞ þ rðxÞf 0

ðxÞ þ tðxÞf ðxÞ ¼ 0 (10)

to the confluent hypergeometric differential equation

s
d2f ðsÞ

ds2
þ ðc � sÞ

df ðsÞ

ds
� af ðsÞ ¼ 0 (11)

the transformation function must satisfy the condition

h02
ðxÞ ¼ jðxÞhðxÞ; (12)

where jðxÞ is any arbitrary function of x: Eq. (12) on integrating gives

hðxÞ ¼

R
ð

ffiffiffiffiffiffiffiffiffiffiffi
jðxÞÞ

p
dx

� 	2
4

: (13)

Also, differentiating Eq. (12) gives

h00
ðxÞ ¼

j0ðxÞhðxÞ

2h0ðxÞ
þ
jðxÞ
2

: (14)

Substituting Eqs. (8), (9), (12) and (14) into Eq. (5) gives

s
d2f ðsÞ

ds2
þ
1

2
þ

j0

2j
þ 2g0 þ

2b

x
þ

A0

A


 � ffiffiffiffi
s

j

r� �
df ðsÞ

ds
þ

ZðxÞ
jðxÞ

f ðsÞ ¼ 0: (15)

In order to obtain the confluent hypergeometric differential equation, the conditions to be
satisfied are

1

2
þ

j0

2j
þ 2g0 þ

2b

x
þ

A0

A


 � ffiffiffiffi
s

j

r
¼ c � s (16)

and

ZðxÞ=jðxÞ ¼ �a: (17)

Now on assuming simple functional forms for jðxÞ; a differential equation in gðxÞ is obtained, by
using Eqs. (16) and (17), whose solution can often be easily obtained by inspection. In this paper,
two simple forms for jðxÞ; which can be easily integrated, are considered for analysis.
3.1. Area variations given by jðxÞ ¼ qx2m

Assuming

jðxÞ ¼ qx2m: (18)
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Thus,

hðxÞ ¼
qx2mþ2

4ðm þ 1Þ2
: (18a)

Substituting Eq. (18) into Eq. (16) and simplifying gives

A0

A
þ 2g0 þ

ð2b þ 2m þ 1Þ

x
�
2cðm þ 1Þ

x
þ

qx2mþ1

2m þ 2
¼ 0: (19)

Substituting Eq. (18) into Eq. (17) and replacing A0=A using (19) gives

g00ðxÞ � g02ðxÞ �CðxÞg0ðxÞ þ
y
x2

þ aq �
bq

2m þ 2

� �
x2m þ O2 ¼ 0; (20)

where

CðxÞ ¼
ð2b þ 2m þ 1Þ

x
�
2cðm þ 1Þ

x
þ

qx2mþ1

2m þ 2
; (21)

y ¼ 2bmc þ 2bc � 2bm � b2 � 2b: (22)

On inspecting Eq. (20), it is found that g0ðxÞ can only be a sum of powers of x: Substituting
g0ðxÞ ¼ xi into Eq. (20) indicates that i can take values 0;�1; 2m þ 1: Thus, g0ðxÞ can be assumed
to be of the form

g0ðxÞ ¼ D þ
B

x
þ Cx2mþ1: (23)

Substituting Eq. (23) into Eq. (20) gives

½O2 � D2	 þ
P

x
þ

Q

x2
þ Rx2m þ �2DC �

Dq

2m þ 2

� �
x2mþ1 þ �C2 �

Cq

2m þ 2

� �
x4mþ2 ¼ 0; (24)

where

P ¼ 2Dcðm þ 1Þ � 2DB � ð2b þ 2m þ 1ÞD; (25)

Q ¼ �B2 � ð2b þ 2m þ 2� 2mc � 2cÞB � ðb2 þ 2b þ 2bm � 2bmc � 2bcÞ; (26)

R ¼ �2BC � ð2b � 2mc � 2cÞC �
ðB þ bÞq

2m þ 2
þ aq: (27)

Only those values of m that keep O non-zero are relevant in this problem. The two values of m
that satisfy this criterion are m ¼ 0 and �1=2:

Case I: When m ¼ 0: Substituting the above condition into Eq. (24) and equating the
coefficients of like powers of x to zero gives

D ¼ 0 and C ¼ 0 or C ¼ �q=2;

B þ b ¼ 0 or B þ b ¼ 2c � 2:

Taking any pair of conditions gives rise to one of the four pairs of linearly independent solutions.
Here, for simplicity, the conditions C ¼ 0 and B þ b ¼ 0 are taken. This gives

a ¼ �O2=q: (28)
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On substituting the values into Eq. (19) and integrating, the suitable area variation is found to be

A ¼ kx2c�1 exp
�qx2

4

� �
: (29)

Therefore, when a rod has a cross-sectional area variation of the form

A ¼ kxn exp½bx2	 (29a)

the solution of Eq. (2) is given as

W ðxÞ ¼ c1M
O2

4b
;

n þ 1

2
;�bx2

� �
þ c2U

O2

4b
;
n þ 1

2
;�bx2

� �
; (30)

where Mða; c;xÞ is the Kummer’s hypergeometric function.
Case II: When m ¼ �1=2: Once again substituting into Eq. (24) and equating the coefficients of

like powers of x to zero gives

ðD þ CÞð2b � c þ 2BÞ þ qðB þ b � aÞ ¼ 0; (31)

ðB þ bÞ ¼ 0 or B þ b ¼ c � 1; (32)

ðD þ CÞ
2
þ ðD þ CÞq � O2 ¼ 0: (33)

The solutions given by either of the conditions (32) are equivalent. For the sake of convenience,
the condition B þ b ¼ 0 is chosen.

D þ C ¼ �
aq

c
; (34)

a

c

 �2
�

a

c

 �
�

O
q

� �2
¼ 0: (35)

Substituting these values into Eq. (19), the appropriate area variation is found to be

A ¼ kxn exp q
2a

n
� 1

� �
x

� �
: (36)

Thus it is found that an area variation of the form

A ¼ kxn exp½bx	 (36a)

gives the solution of Eq. (2) as

W ðxÞ ¼ exp
�b � v

2
x

� �
c1M

b

v
þ 1

� �
n

2
; n; vx

� �
þ c2U

b

v
þ 1

� �
n

2
; n; vx

� �� �
;

where

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4O2

p
: (37)

The general solutions obtained above can be shown to be consistent with existing special
solutions for vibration of rods with uniform, exponential and polynomial area variations.
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In Eq. (29a), as b approaches 0, the area variation becomes polynomial in nature; similar to the
area variation studied by Kumar and Sujith [7] (with a ¼ 1 and b ¼ 0Þ: Therefore, substituting lim
b ! 0 into Eq. (30) and using the following identities [10],

lim
a!1

M a;b;�
z

a

 �
¼ GðbÞzð1�bÞ=2Jb�1ð2

ffiffiffi
z

p
Þ

and

lim
a!1

Gð1þ a� bÞU a;b;�
z

a

 �n o
¼ 2zð1�bÞ=2Yb�1ð2

ffiffiffi
z

p
Þ (38)

gives

U1ðxÞ ¼
Ox

2

� �ð1�nÞ=2

½C1J ðn�1Þ=2ðOxÞ þ C2Y ðn�1Þ=2ðOxÞ	 (39)

which is the same as the solution of Kumar and Sujith [7].
Again, taking the limit as b approaches 0 in Eq. (37) and using the identities [11]

JpðxÞ ¼
ðx=2Þp

Gðp þ 1Þ
e�ixM p þ 1

2
; 2p þ 1; 2ix

� �
;

Y pðxÞ ¼
ðx=2Þp

Gðp þ 1Þ
e�ixU p þ 1

2
; 2p þ 1; 2ix

� �
: ð40Þ

the Bessel functional forms as in Ref. [7] are once again obtained.
Also, substituting lim b ! 0 & lim n ! 0 in both Eqs. (30) and (37), the exponential solutions

corresponding to that of the homogeneous rod can be readily obtained. Similarly, substituting
lim n ! 0 into Eq. (37) easily gives the solution for the inhomogeneous rod with exponential area
variation [12].

3.1.1. Natural frequencies of variable area rods—numerical examples and analysis

In this section, the variation of the natural frequencies of vibration, of rods with the above area
variations, with respect to the involved parameters is analyzed. The natural frequencies are
obtained for the classical boundary conditions given in Section 2. In all cases, l1 ¼ 0:1 units and
l2 ¼ 1:1 units.
Consider a fixed–fixed rod with area variation A ¼ kxn expðbx2). Applying the appropriate

boundary conditions, a pair of homogeneous, simultaneous equations is obtained:

c1M
O2

4b
;
n þ 1

2
;�0:01b

� �
þ c2U

O2

4b
;
n þ 1

2
;�0:01b

� �
¼ 0; (41)

c1M
O2

4b
;
n þ 1

2
;�1:21b

� �
þ c2U

O2

4b
;
n þ 1

2
;�1:21b

� �
¼ 0: (42)
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These equations will have a non-trivial solution only when their determinant vanishes, thus giving
the transcendental equation for the eigenvalues O as

M
O2

4b
;
n þ 1

2
;�0:01b

� �
U

O2

4b
;
n þ 1

2
;�1:21b

� �

� U
O2

4b
;
n þ 1

2
;�0:01b

� �
M

O2

4b
;
n þ 1

2
;�1:21b

� �
¼ 0: ð43Þ

The eigenvalues O that satisfy the above equation for different parametric values are given in
Tables 1 and 2. A close look at these two tables will show that for a fixed value of b; the
eigenvalues first decrease with increasing n and then increase. Moreover, the value of n at which
the eigen frequency is minimum decreases with increase in b: Also, it can be seen that, unlike in the
homogeneous case, the natural frequencies are no longer integral multiples of the fundamental
frequency.
For a fixed–free rod with the above area variation and appropriate boundary conditions, the

resultant equation is

n þ 1

2
M

O2

4b
;
n þ 1

2
;�0:01b

� �
U

O2

4b
þ 1;

n þ 3

2
;�1:21b

� �

þ U
O2

4b
;
n þ 1

2
;�0:01b

� �
M

O2

4b
þ 1;

n þ 3

2
;�1:21b

� �
¼ 0: ð44Þ

The eigenvalues that satisfy the above transcendental equation are given in Table 3. In this case,
however, the eigenvalues are found to be monotonically decreasing with increasing n for all
values of b:
Table 1

Fundamental frequency for fixed–fixed rods with A ¼ kxn expðbx2Þ

n b

�3 �2 �1 �0.5 0.5 1 2 3

�2.5 5.286 4.914 4.608 4.486 4.316 4.270 4.260 4.353

�2.0 4.885 4.546 4.280 4.180 4.058 4.038 4.082 4.226

�1.5 4.471 4.170 3.949 3.875 3.810 3.820 3.923 4.122

�0.5 3.622 3.420 3.317 3.309 3.384 3.464 3.701 4.015

0.0 3.206 3.068 3.043 3.077 3.235 3.356 3.663 4.034

0.5 2.817 2.759 2.825 2.906 3.154 3.314 3.689 4.115

1.0 2.479 2.518 2.686 2.816 3.152 3.349 3.787 4.260

1.5 2.221 2.369 2.642 2.818 3.232 3.462 3.951 4.465

2.0 2.068 2.327 2.695 2.910 3.386 3.642 4.173 4.720

2.5 2.030 2.386 2.829 3.074 3.598 3.873 4.438 5.012

3.0 2.094 2.525 3.023 3.290 3.850 4.140 4.731 5.328
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Table 2

First overtone frequency for fixed–fixed rods with A ¼ kxn expðbx2Þ

n b

�3 �2 �1 �0.5 0.5 1 2 3

�2.5 7.939 7.700 7.518 7.445 7.345 7.310 7.302 7.350

�2.0 7.580 7.367 7.209 7.151 7.081 7.069 7.090 7.173

�1.5 7.234 7.046 6.917 6.876 6.839 6.845 6.903 7.023

�0.5 6.612 6.484 6.422 6.417 6.458 6.501 6.636 6.835

0.0 6.355 6.262 6.238 6.252 6.331 6.397 6.573 6.811

0.5 6.147 6.090 6.107 6.142 6.263 6.349 6.564 6.839

1.0 5.992 5.976 6.034 6.090 6.252 6.357 6.612 6.921

1.5 5.897 5.924 6.024 6.100 6.302 6.433 6.715 7.055

2.0 5.864 5.934 6.075 6.171 6.404 6.552 6.871 7.238

2.5 5.892 6.003 6.184 6.298 6.572 6.730 7.074 7.464

3.0 5.976 6.126 6.344 6.475 6.773 6.936 7.317 7.727

Table 3

Fundamental frequency for fixed–free rods with A ¼ kxn expðbx2Þ

n b

�3 �2 �1 �0.5 0.5 1 2 3

�2.5 4.884 4.310 3.738 3.455 2.904 2.638 2.133 1.674

�2.0 4.494 3.946 3.399 3.129 2.603 2.350 1.874 1.447

�1.5 4.089 3.570 3.051 2.795 2.298 2.061 1.617 1.226

�0.5 3.233 2.782 2.330 2.109 1.684 1.485 1.120 0.812

0.0 2.791 2.377 1.966 1.765 1.384 1.207 0.891 0.630

0.5 2.350 1.978 1.610 1.432 1.100 0.948 0.682 0.470

1.0 1.924 1.594 1.274 1.121 0.840 0.715 0.501 0.338

1.5 1.525 1.241 0.970 0.844 0.616 0.518 0.354 0.233

2.0 1.169 0.931 0.710 0.610 0.435 0.359 0.241 0.156

2.5 0.864 0.672 0.500 0.424 0.295 0.242 0.159 0.101

3.0 0.617 0.468 0.341 0.285 0.194 0.158 0.101 0.064
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For a free–free rod of the same area variation, the appropriate equation is

M
O2

4b
þ 1;

n þ 3

2
;�0:01b

� �
U

O2

4b
þ 1;

n þ 3

2
;�1:21b

� �

� U
O2

4b
þ 1;

n þ 3

2
;�0:01b

� �
M

O2

4b
þ 1;

n þ 3

2
;�1:21b

� �
¼ 0: ð45Þ

The natural frequencies for this case are given in Table 4. In this case, similar patterns as in the
case of fixed–fixed rods are observed.
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Table 4

Fundamental frequency for free–free rods with A ¼ kxn expðbx2Þ

n b

�3 �2 �1 �0.5 0.5 1 2 3

�2.5 5.012 4.438 3.873 3.600 3.074 2.829 2.386 2.030

�2.0 4.720 4.173 3.642 3.386 2.910 2.695 2.327 2.068

�1.5 4.465 3.951 3.461 3.232 2.819 2.642 2.369 2.221

�0.5 4.115 3.689 3.314 3.154 2.906 2.825 2.759 2.817

0.0 4.034 3.663 3.356 3.235 3.077 3.043 3.068 3.206

0.5 4.015 3.700 3.464 3.384 3.309 3.317 3.420 3.622

1.0 4.048 3.792 3.624 3.581 3.581 3.624 3.792 4.048

1.5 4.122 3.923 3.820 3.810 3.875 3.949 4.170 4.471

2.0 4.226 4.082 4.038 4.047 4.179 4.279 4.546 4.885

2.5 4.353 4.260 4.270 4.316 4.489 4.608 4.914 5.286

3.0 4.495 4.450 4.509 4.578 4.792 4.933 5.273 5.675
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Now, consider a fixed–fixed rod with area variation A ¼ kxnebx: Applying the appropriate
boundary conditions, another pair of homogeneous simultaneous equations is obtained:

c1M
b

v
þ 1

� �
n

2
; n; 0:1v

� �
þ c2U

b

v
þ 1

� �
n

2
; n; 0:1v

� �
¼ 0; (46)

c1M
b

v
þ 1

� �
n

2
; n; 1:1v

� �
þ c2U

b

v
þ 1

� �
n

2
; n; 1:1v

� �
¼ 0; (47)

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4O2

p
:

On making the determinant of these homogeneous equations vanish, the transcendental
equation for the natural frequencies is obtained as:

M
b

v
þ 1

� �
n

2
; n; 0:1v

� �
U

b

v
þ 1

� �
n

2
; n; 1:1v

� �

� U
b

v
þ 1

� �
n

2
; n; 0:1v

� �
M

b

v
þ 1

� �
n

2
; n; 1:1v

� �
¼ 0: ð48Þ

Solution of the above equation for the natural frequencies O for different values of the parameters
is given in Tables 5–7.
A study of the Tables 5–7 illustrates that the eigenvalues first decrease with increase in n for a

given b and then increase. In addition, the value of n corresponding to minimum eigenfrequency
decreases with increase in b: Also, in all cases, higher mode frequencies are not integral multiples
of the fundamental frequency.
For a fixed–free rod with the above area variation and appropriate boundary conditions, the

resultant equation is

F ðvÞM
b

v
þ 1

� �
n

2
; n; 0:1v

� �
þ GðvÞU

b

v
þ 1

� �
n

2
; n; 0:1v

� �
¼ 0;
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Table 6

First overtone frequency for fixed–fixed rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 8.014 7.780 7.570 7.387 7.234 7.113 7.023

�1.5 7.335 7.143 6.980 6.850 6.754 6.694 6.670

�0.5 6.720 6.586 6.488 6.428 6.406 6.423 6.478

0.5 6.245 6.187 6.170 6.193 6.256 6.359 6.498

1.5 5.982 6.012 6.083 6.193 6.342 6.525 6.740

2.5 5.965 6.083 6.237 6.428 6.650 6.900 7.176

Table 5

Fundamental frequency for fixed–fixed rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 5.238 4.923 4.637 4.388 4.181 4.024 3.921

�1.5 4.551 4.267 4.023 3.828 3.690 3.614 3.605

�0.5 3.835 3.606 3.436 3.331 3.300 3.345 3.460

0.5 3.149 3.025 2.979 3.016 3.134 3.323 3.572

1.5 2.645 2.686 2.814 3.016 3.280 3.593 3.941

2.5 2.509 2.729 3.008 3.331 3.689 4.071 4.473

Table 7

Second overtone frequency for fixed–fixed rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 10.858 10.675 10.511 10.368 10.248 10.150 10.077

�1.5 10.249 10.105 9.985 9.888 9.816 9.769 9.748

�0.5 9.743 9.649 9.581 9.539 9.523 9.532 9.568

0.5 9.386 9.349 9.339 9.355 9.398 9.468 9.563

1.5 9.205 9.228 9.278 9.355 9.458 9.586 9.738

2.5 9.211 9.295 9.404 9.539 9.697 9.879 10.080
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where

F ðvÞ ¼ nU
b

v
þ 1

� �
n

2
þ 1; n þ 1; 1:1v

� �
þ U

b

v
þ 1

� �
n

2
; n; 1:1v

� �� �
;

GðvÞ ¼ M
b

v
þ 1

� �
n

2
þ 1; n þ 1; 1:1v

� �
� M

b

v
þ 1

� �
n

2
; n; 1:1v

� �� �
: ð49Þ
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Table 8

Fundamental frequency for fixed–free rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 4.415 3.992 3.578 3.176 2.789 2.417 2.065

�1.5 3.742 3.328 2.928 2.543 2.177 1.832 —

�0.5 3.020 2.625 2.248 1.893 1.563 1.263 —

0.5 2.256 1.898 1.564 1.261 — — —

1.5 — 1.209 0.949 0.725 — — —

2.5 — — — 0.356 — — —

Table 9

First overtone frequency for fixed–free rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 6.960 6.644 6.348 6.073 5.824 5.604 5.416

�1.5 6.239 5.954 5.689 5.458 5.259 5.094 4.973

�0.5 5.541 5.301 5.093 4.922 4.794 4.714 4.687

0.5 4.942 4.769 4.639 4.558 4.530 4.559 4.648

1.5 4.534 4.453 4.425 4.455 4.544 4.691 4.891

2.5 4.387 4.413 4.498 4.639 4.832 5.072 5.351
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The eigenvalues for the above equation are given in Tables 8 and 9. In this case, the fundamental
mode is found to decrease with increasing n and disappears altogether for certain values of the
parameters n and b: A similar pattern of disappearing modes was observed by Kumar and
Sujith [7]. For a free–free rod of the same case, the appropriate equation is

JðvÞNðvÞ � KðvÞLðvÞ ¼ 0;

where

JðvÞ ¼ M
b

v
þ 1

� �
n

2
þ 1; n þ 1; 0:1v

� �
� M

b

v
þ 1

� �
n

2
; n; 0:1v

� �
;

KðvÞ ¼ nU
b

v
þ 1

� �
n

2
þ 1; n þ 1; 0:1v

� �
þ U

b

v
þ 1

� �
n

2
; n; 0:1v

� �
;

LðvÞ ¼ M
b

v
þ 1

� �
n

2
þ 1; n þ 1; 1:1v

� �
� M

b

v
þ 1

� �
n

2
; n; 1:1v

� �
;

NðvÞ ¼ nU
b

v
þ 1

� �
n

2
þ 1; n þ 1; 1:1v

� �
þ U

b

v
þ 1

� �
n

2
; n; 1:1v

� �
: ð50Þ
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Table 10

Fundamental frequency for free–free rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 4.473 4.071 3.689 3.331 3.008 2.729 2.510

�1.5 3.941 3.593 3.281 3.016 2.814 2.686 2.644

�0.5 3.572 3.323 3.134 3.016 2.979 3.025 3.149

0.5 3.461 3.344 3.300 3.331 3.436 3.606 3.835

1.5 3.604 3.614 3.690 3.828 4.023 4.266 4.551

2.5 3.921 4.022 4.180 4.388 4.637 4.923 5.239

Table 11

First overtone frequency for fixed–free rods with A ¼ kxnebx

n b

�3 �2 �1 0 1 2 3

�2.5 7.176 6.900 6.650 6.428 6.237 6.081 5.965

�1.5 6.740 6.525 6.342 6.193 6.081 6.012 5.982

�0.5 6.498 6.358 6.256 6.193 6.17 6.188 6.245

0.5 6.478 6.422 6.406 6.428 6.488 6.586 6.720

1.5 6.668 6.694 6.754 6.85 6.981 7.143 7.336

2.5 7.022 7.112 7.238 7.387 7.570 7.779 8.014

A. Raj, R.I. Sujith / Journal of Sound and Vibration 283 (2005) 1015–1030 1027
The eigenvalues for the above example are given in Tables 10 and 11. In this case, too, patterns,
similar to that of corresponding fixed–fixed rods, are observed.
The governing differential equation was also numerically integrated, using a Fourth-Order

Runge–Kutta Scheme with adaptive step sizing, for all cases considered above, and the
eigenfrequencies obtained were verified.
3.2. Area variations specified by jðxÞ ¼ qx2p�2 expðmxpÞ

In this section, another easily integrable form of jðxÞ is chosen as follows:

jðxÞ ¼ qx2p�2 expðmxpÞ: (51)

This gives

hðxÞ ¼
q

ðmpÞ2
expðmxpÞ: (51a)
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Substituting Eq. (51) into Eq. (16) gives

A0ðxÞ

AðxÞ
þ 2g0ðxÞ þ

2b þ p � 1

x
þ ð1� cÞmpxp�1 þ

q

mp
xp�1 expðmxpÞ ¼ 0: (52)

Substituting Eq. (51) into Eq. (17) and using A0=A from (52) gives

g00 � g02 � Fg0 �
bðb þ pÞ

x2
þ bðc � 1Þmpxp�2 �

bq

mp
xp�2 expðmxpÞ

þ aqx2p�2 expðmxpÞ þ O2 ¼ 0;

where

F ¼
2b þ p � 1

x
þ

q

mp
xp�1 expðmxpÞ � ðc � 1Þmpxp�1: (53)

Upon inspection, it is found that g0ðxÞ can, once again, only contain terms that are powers of x:
Substitution g0ðxÞ ¼ xl into Eq. (53) indicates that the only values that l can take are �1 and
p � 1:
Thus, assuming a functional form for g0ðxÞ as

g0ðxÞ ¼
B

x
þ Dxp�1 (54)

and substituting into Eq. (53) gives

P

x2
þ Qxp�2 þ ½�D2 þ Dðc � 1Þmp	x2p�2 �

ðB þ bÞq

mp

� �
xp�2 expðmxpÞ

þ a �
D

mp

� �
q

� �
x2p�2 expðmxpÞ þ O2 ¼ 0;

where

P ¼ �ðB þ bÞðB þ a þ pÞ;

Q ¼ ðB þ bÞð�2D þ mcp � mpÞ: ð55Þ

The only possible values of p that maintain O non-zero are p ¼ 1 and 2, as obtained by examining
the above equation. Again, substitution of p ¼ 2 into the above equation and equating the
coefficients of like powers of x to zero gives O ¼ 0: Thus, the only possibility left is p ¼ 1:
Substituting this value into Eq. (55) and equating the coefficients of like powers of x to zero gives

B þ b ¼ 0 and a ¼ D=m;

D2 � Dmðc � 1Þ � O2 ¼ 0:

Substituting the above values into Eq. (52) and integrating gives

A ¼ k expððc � 2a � 1ÞmxÞ exp �
q

m2
expðmxÞ

 �
: (56)

Thus, an area variation of the form

A ¼ k expðbxÞ expðn expðmxÞÞ (56a)
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gives the solution of Eq. (2) as

W ðxÞ ¼ eðv�bÞx=2 c1M
v � b

2m
; 1þ

v

2m
;�nemx

� �
þ c2U

v � b

2m
; 1þ

v

2m
;�nemx

� �� �
;

where v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4O2

p
: ð57Þ

4. Discussion

Since the paper mainly deals with a mathematical technique for obtaining special solutions, the
ideas developed here can also be used to examine other mathematically identical problems. Other
problems governed by a similar differential equation

q
qu1

X ðu1Þ
qy

qu1

� �
¼ Y ðu1Þ

q2y
qt2

(58)

are

X ðu1Þ Y ðu1Þ y u1

ðaÞ Torsional vibration of rods JðxÞ
rJðxÞ

G
yðxÞ x

ðbÞ Vibration of strings 1 lmðxÞ uðxÞ x

ðcÞ Vibration of membranes 1 lrðrÞ uðrÞ r

ðdÞ Wave propagation in ducts AðxÞ
AðxÞ

c2
pðxÞ x

Thus, the solutions developed in this study could be used for other problems as well [13].
5. Conclusions

In this study, a general analytical technique that helps in obtaining cross-sectional area
variations, which gives specific, closed-form solutions for the longitudinal vibration of rods, has
been derived. The technique involves assuming a general functional form for the displacement and
a generic transformation function and then placing restrictions on the transformation function to
obtain solutions of a particular kind. Some area variations that give the solution to the problem in
terms of Kummer’s hypergeometric function have been obtained. Expressions have been obtained
to calculate the natural frequencies of rods, subjected to classical boundary conditions, and the
parametric space of the solutions obtained has been studied. The variation of the fundamental
and first overtone frequencies with the parameter values has been listed.
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